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Highlights 

 New generalized models are obtained for the dual-spin spacecraft with the constructional/mass-

inertia asymmetry. 

 New action-angle-solutions for the heteroclinic case of the dynamics are found. 

 The Melnikow-Wiggins formalizm was used for the heteroclinic chaos analysis in the hamiltonian 

and non-Hamiltonian cases of the perturbations; the problems of the Melnikov-Wiggins 

methodology are indicated. 

 Chaos suppression techniques are considered and new heteroclinic chaos suppressing schemes 

are suggested. 
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Abstract. Chaotic dynamics of the dual-spin spacecraft (DSSC) and gyrostats-satellites is analyzed at the 

presence of the constructional asymmetry and at the action of the internal/external perturbations, including 

the friction between the coaxial DSSC bodies, electromotors’ torques applied to the rotor-body from the 

platform-body by internal engines, the counterelectromotive forces/torques in internal engines, internal 

plyharmonic disturbances and external magnetic perturbations. The heteroclinic chaos suppression tasks are 

considered basing on the Melnikov-Wiggins formalism. Some alternative chaos suppressing techniques are 

described.  

Keywords: Dual-Spin Spacecraft, Satellite, Gyrostat, Exact Heteroclinic Solutions, Action-Angle Variables, 

Chaotic Dynamics, Heteroclinic Net, Melnikov-Wiggins Methodology, Poincaré Map 

 

1. Introduction 

In this (second) part of the paper we will continue to explore the attitude dynamics of the 

magnetized DSSC with the complex constructional/mass-inertia asymmetry focusing on chaotic 

aspects of the motion and basing on the models and solutions constructed in the first part of the 

paper. The detection of the heteroclinic chaos will be described with the use of the Melnikov-

Wiggins formalism, and also the chaos suppressing techniques with the corresponding results 

will be presented.  

The main problems, tasks and publications related to the regular/chaotic DSSC dynamics 

were indicated in the corresponding introduction section in the first part of the paper 

(The Part I – Main models and solutions). So the readers are invited to reading the first part of 

this paper.  

Using in this paper formulas and figures have the common continued numeration for both 

parts of the paper; the references list is also common.  

2. The mechanical and mathematical models 

The mechanical and mathematical models for the DSSC attitude dynamics are presented 

in the first part of the research (The Part I – Main models and solutions). The readers are invited 

to reading the first part of the paper.  

3. Chaotic dynamics analysis 

Let us consider the Melnikov’s-Wiggins’ formalism application to the analysis of the 

chaotic phenomena in the DSSC attitude dynamics at the presence of perturbations. One of the 

important part of the analysis is to give some descriptions of the Melnikov’s-Wiggins’ 

methodology application in the connection to the possibility of the heteroclinic chaos 
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suppression at some conditions relatively the perturbations. It is well-known fact, the 

construction of the Melnikov’s-Wiggins’ formalism was started in the works of V.K. Melnikov 

(1963), where the homoclinic manifolds intersections were analytically detected, and V.I. Arnold 

(1964), where this analytical technique was generalized with the help of the “moustached” tori 

theory [Arnold (1964)]; and for multi-dimensional dynamical systems it took the useful form 

after works P.J. Holmes & J.E. Marsden (1983), and S. Wiggins (1988). Also here we should 

note the related work of V.V. Kozlov (1980), where the dynamical systems nonintegrability was 

investigated as the effect of the homo/heteroclinic separatix splitting at the action of 

perturbations. 

For the further investigation we have the heteroclinic solutions for the motion parameters, 

including angular velocity components (2.1), the Serret-Andoyer variables (2.8), the Cartesian 

coordinates  ,   and the corresponding action-angle  ,I w
 canonical pare (2.24). All of 

these solutions are needed for the correct application of S.Wiggins’ (and also P.J.Holmes’-

J.E.Marsden’s) methodology [Wiggins (1988); Holmes & Marsden (1983)], using the natural 

form of the main dynamical system (1.62) with the addition of the conjunctional heteroclinic 

expressions (2.24) for the reciprocal transition between the Cartesian and action-angle rotating 

phases    , ,w I   . 

3.1. The Melnikov-Wiggins function structure [Wiggins (1988)] 

The chaos phenomenon in the DSSC dynamical system was considered in the wide spectrum 

of works [e.g., Aslanov, Bao-Zeng, Chen, Doroshin, El-Gohary, Ge, Hall, Holmes, Iñarrea, 

Lanchares, Leung, Kuang, Meechan, Neishtadt, Or, Peng, Shirazi, Tong, et al.] – here is not any 

necessity to repeat the corresponding well-known results and observations. At the same time the 

problem of the heteroclinic chaos avoidance/suppression has been investigated in many scientific 

treatises, including the indicated works, but by the reason of the multiplicity of its instrumental 

implementation this problem can be additionally considered. Below we present one more 

application of the Melnikov’s-Wiggins’ methodology for the solution of the task of the 

heteroclinic chaos suppression in dynamics of the asymmetric magnetized DSSC in the 

neighborhood of the cylindrical precession regime under the action of perturbations.  

For the purpose of the Melnikov’s-Wiggins’ methodology application (to choice the 

appropriate form of the Melnikov-Wiggins-function) we must give some preliminary comments 

about dynamical systems, which we constructed above and which is used in the Melnikov’s-

Wiggins’ methodology [Wiggins (1988)-(1992)]. So, in our research we will consider two types 

[Wiggins (1988)] of dynamical systems: a system of the first type (System I) - the system, which 

has the perturbed vector field with dissipative nature, and a system of the third type 

(System III) – the system with Hamiltonian perturbations. 

The System I [Wiggins (1988)] has the following structure: 

   

 

   

0 , , , , ; ;

, , , ; ;

, , , , ; ;

x

x

I

x JD x I g x I w

I g x I w

w x I g x I w

  

  

  

  





  

 (3.1) 
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where J is the symplectic matrix, μ is the parameters vector, and   2, , n m kx I w T   ; also we 

indicate that in the original notations [Wiggins (1988)] the phase-angle-variable w is denoted 

as θ. 

The System III [Wiggins (1988)] is fully Hamiltonian: 

   

 

   

0 1

1

0 1

, , , , ; ;

, , , ; ;

, , , , ; ;

x x

w

I I

x JD x I JD x I w

I D x I w

w D x I D x I w

  

  

  

  


 


 

 (3.2) 

where   2, , n m mx I w T   , and, moreover, the canonical pairs  ,I w  correspond to the 

action-angle variables.  

Now we present the Melnikov vector function for the considering systems [Wiggins (1988)]: 

The system I. 

         1

0 1 0 0 0, ; , ; ,..., , ; , , ; ,I I I k n p

nM w M w M w w T             (3.3) 

where  

    0 0, ; , , , ;0I x I I

i x i I iM w D K g D K g q t dt  




   
   

        0, , , ;0 ; 1,...,I I

I iD K I I g q t dt i n 




   (3.4) 

and        0 0, , , , ,
t

I I Iq t x t I x s I ds w    , that corresponds to the solution on the 

homo(hetero)clinic orbit for the selected value of the action-variable I ; 0 1 2, ,..., nK K K   are 

the constants corresponding to the system’s “first integrals”; ,  denotes the usual Euclidian 

inner product (scalar product); the argument  I  indicates that the block   ,I iD K I I  is 

calculated at the homo(hetero)clinic fixed point corresponding to the selected value of the action-

variable I  (where  I  is “the curve” formed by the homo(hetero)clinic points’ positions – this 

curve is built in the unperturbed phase space, and is parameterized by I);  is the system 

parameters set;   is a parameter, which separates/distinguishes the concrete homo(hetero)clinic 

solution from the corresponding continuous set of such homo(hetero)clinic solutions.  

 

The system III. 

          0 2 0 0 1 0 0, ; , ; ,..., , ; , , ; ,..., , ; ;I I I I I

n n n mM w M w M w M w M w            (3.5) 

where   1

0 , ; ,m n pw T      

    0 01 1, ; , , , ;0I I

i x i x I i wM w D K JD D K D q t dt  




       
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     1 0, , , ;0 , 2,..., ;I

I i wD K I I D q t dt i n    (3.6) 

    0 1 0, ; , ;0 , 1,..., ;
i n

I I

i wM w D q t dt i n n m  






      

and        00 0, , , , , .
t

I I I

Iq t x t I D x s I ds w    (3.7) 

Here it is important to remark [Wiggins (1988)] that we do not measure the distance between 

the stable and unstable split heteroclinic manifolds along the direction    1,0 ,0x xD K D , 

since, for the System III, the level surfaces of     are preserved under the 

perturbation and the direction  1,0xD K  is complementary to these surfaces – by this reason the 

Melnikov vector does not contain the corresponding 1
st
 component. 

In the connection to the DSSC motion coordinates, for both systems we can indicate that 

n=m=k=1. Also the following correspondences take place:  

   

        
         

     0

, ; ; ;

, , , ; , , , , , , , ;

, , , ; , , , ; , , , ; , , , ;

, , , , .

x

l L

I w

I

x l L I I w w

g x I w g l L I w g l L I w

g x I w g l L I w g x I w g l L I w

x I D x I f l L I



 

  





   

     



 

  



    





 

  

 (3.8) 

As can we see from the expressions (1.63) (taking into account (1.60), (1.61)), all of the 

perturbations , , ,l Lg g g g   (3.8) are 2π-periodic in the -angle argument. 

In the framework of the comments about the systems (the system I and the system III), we 

finally must give main statements, which divide cases of using the different systems types in the 

connection to the DSSC perturbed motion. 

The Statement 1. If we consider the motion under the influence of the general form of the 

perturbations (1.63) at the presence of the non-Hamiltonian parts  ,f DCm m  , then we have to 

use the form of the System I (3.1) and (since n=1) the monocomponent Melnikov function 

 1 0 , ;IM w    which is evaluated using (3.4) by the following manner (rejecting from our 

consideration the parametric arguments α and μ): 

   
     00

0 01 0 0 0 ;II

I

l l L L q tq t
M w D g D g D g dt D g dt



 

   

 

       (3.9) 

or, taking into account (1.63), we get 

   
     00

1 0 ;II

I

L l qql L tt
M w f g g f g dt f dtf g  

 

 

 

         

        0 0, , , ,
t

Iq t l t L t f s ds w    (3.10) 

where the phase-angle-integral in  0

Iq t  corresponds to the heteroclinic solution for the 

Cartesian angle, which also can be rewritten through the action-angle variables basing on (2.24): 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 
   

     
, ,

t

l s L s
f s ds t w t v t  


    (3.11) 

As the result we will have the following explicit heteroclinic solutions set for the Melnikov 

function (including expressions (2.1), (2.3) and (2.8)): 

          0 0 0, , ,
t

Iq t l t L t I f s ds w t w       

                         0 0, , ,l p t ,q t ,r t , t L p t ,q t ,r t , t w t w w t v t w           

(3.12) 

Here we fulfill the explicit separation of the “starting phase” w0 in (3.12) from the main part of 

the expression for the angular variable – it means that the small redesignation (with respect to 

(2.24)) takes place; and, therefore, everywhere below we imply for the Melnikov-Wiggins 

function that: 

 

       

*

*

;w t t

t w t v t t v t



  



 

  


    

 (3.13) 

Also in the framework of the Melnikov-Wiggins function’s structure it is worth to note 

[Wiggins (1988)] the equivalence in the use of the “starting phase” (w0) and in the use of the 

“starting time” (t0) at the evaluation of the Melnikov-Wiggins function basing on the variation of 

the angle-variable w  as the main varied “sliding parameter”, because the corresponding linear 

recalculation of these parameters will take place. This circumstance [Wiggins (1988)] follows 

directly from the form of the angle-variable: 

 

   
0 * 0

0 * 0 * 0

;

;

w t w t w

w t t t t t w







 

   


    

 

and, therefore, the “sliding parameter” finally is shifted by the redesignated constant [Wiggins 

(1988)]. So, we will use the “starting phase” of the angle-variable (w0) as the main varied 

“sliding parameter” in all our further evaluations. 

The Statement 2. If the non-Hamiltonian perturbations are not considered in the research 

 0f DCm m   , then we have to use the form of the System III (3.2) and (since n=m=1) the 

monocomponent Melnikov function  2 0 , ;IM w    which is evaluated using (3.7) by the 

following manner (taking into account (1.60), (1.61)): 

 
 0

12 0 ,I

I

q t
M w D dt





    (3.14) 

where we have the same (as in the Statement 1) explicit heteroclinic set (3.12) for the Melnikov 

function. 

3.2. Chaos detection in the dynamical system of the asymmetrical DSSC 

3.2.1. The case with Hamiltonian perturbations 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Let us consider an example of the motion of the asymmetrical DSSC with the small angular 

 2 20, 0    and linear  2 20, 0x yl l   displacements of the axis of the coaxial bodies 

rotation (P1P2 at the fig.1) relative to the principal central frame 2 2 2 2C x y z  of the main-body, and 

without analogous possible displacements of the rotor-body  1 1 1 1 0x yl l      at the action of 

the magnetic (1.51) and biharmonic (1.59) perturbations, which is fulfilled at this conditions: 

2 2 2 2

1 1 1 1

0; 0; 0; 0; 0;

0, 0; 0, 0;

0;

1; 0; 2

B l m

x y

x y

e e e e e

l l

l l

c s N



 

 

 

    


   


   
   

I

 (3.15) 

 Then the Melnikov-Wiggins function will have the form, which follows from (3.14), 

(1.60), (1.61), and taking into account expressions (1.40) and (1.32): 

 
   0 0

1 1 1 1 1
2 0

I I

m m
I B

q t q t

T P P T P P
M w dt dt

 

     

 

 

        
           

        
   

                

        

          

2 21
0 0

0 0

1

0 0

sin 2 cos 2
2

cos sin

cos sin .

B

N

n n

n

m

A
e p t q t t w p t q t t w

e n a n t w b n t w

Q
e Bq t t w Ap t t w dt

G



 

 

 








         



    


    





  (3.16) 

Using elementary trigonometric transformations, and with the help of the symmetry properties of 

the odd- and even-functions, we have the following integration result in the form of the 

trigonometric polynomial: 

 
1 1 2 2

2 0 0 0

0 0 0 0

sin 2 sin

cos sin cos 2 sin 2 ,

I

B B m m

a b a b

M w e J w e J w

e J w J w J w J w    

  

    
 

 (3.17) 

where the nonzero constants for the convergent
1
 improper integrals take place (we will not 

reduce the integrals to the explicit analytical expressions): 

            

       

   

   

1 1

2 2

2 21

1 1

2 2

cos sin const 0;
2

cos sin const 0;

cos const 0; cos const 0;

2 cos 2 const 0; 2 cos 2

B

m

a b

a b

A
J p t q t t p t q t t dt

Q
J Ap t t Bq t t dt

G

J a t dt J b t dt

J a t dt J b t dt

 

 

 

 

 

 









 

 

 

 

      
 

     

      

    





 

  const 0.













 


 (3.18) 

                                                           
1
 The convergence of the integrals can be verified numerically and/or analytically. 
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 The Melnikov-Wiggins function in the form of the pure trigonometric polynomial (3.17) 

with constant coefficients (3.18), obliviously, has the infinity set of simple roots, that proves the 

heteroclinic chaos initiation in the magnetized asymmetry DSSC attitude dynamics at the 

presence of the considered Hamiltonian perturbations (the constructional asymmetry, magnetic 

and polyharmonic perturbations). Here it is important to note, that the well-known examples of 

the homo/heteroclinic chaos initiation in the quite similar Hamiltonian cases were collected in 

many previous scientific works; e.g. chaos in the free motion of the coaxial rigid bodies systems 

(the rigid body with attachments) was considered in [Holmes & Marsden (1983)] basing on the 

Holms’-Marsden’s methodology (as the result was obtained the monoharmonic Melnikov 

function in the form:    0 0sin 2M w C w ); the same monoharmonic result also was presented in 

the task of a gyrostat motion with asymmetric rotor [Peng (2000)]; also the chaos in the pitch 

motion of an asymmetric magnetic spacecraft in polar elliptic orbit was studied [Iñarrea (2009)], 

where the monoharmonic form of the Melnikov function was written; the chaos in the 

reorientation process of a dual-spin spacecraft with time-dependent moments of inertia was 

investigated in [Iñarrea (2000)] with obtaining the monoharmonic form of the Melnikov 

function; the monoharmonic form of the Melnikov function is actual for the chaotic motion of an 

asymmetric gyrostat in the magnetic field of the Earth at the consideration of the magnetic 

moment as the small perturbation on the equatorial orbit [Cheng (2000)]. 

 So, now it is worth to present some results of the numerical modeling (fig.5) to show the 

main properties of the detected chaotic motion. The following system’s parameters and initial 

conditions were taken for the numerical research: 

2 2

1 1 2 2

0.03; 1; 0;

0, 0.25, 0.9 [kg m / s ].

B l m Fe e e e e e

a b a b

       


     

I
  

2

1 1 2 2 2

2 2

2 2 2 2 2 2 2 2

ˆ ˆ ˆ5; 4; 15; 10; 6 [kg m ];

ˆ ˆ; .

A C A B C

A A M OP B B M OP

     

     

 
0 0 0 0

2 2 2

1.5, 0, 1.33124; 0.58124 [rad/ s];

3, 31.9487 [kg m / s]; 20, 35.8198 [kg m / s ].

p q r

G Q T

    

       
 

As we can see (fig.5), the complex time-evolutions of the angular velocity components 

(fig.5-a, -b) and the phase-trajectory in the Serret-Andoyer phase-space (fig.5-d) with the 

irregular behavior take place. Also in purposes to understand the main properties of the system 

dynamics, it is very informatively to use the Poincaré sections. The considered in this research 

Poincaré sections (fig.6) are plotted based on the “stroboscopic” condition, when the 

corresponding heteroclinic angular phase repeats its own initial value with the 2π-period: 

   mod 2 0 0w t w       (3.19) 
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(d) 

 

Fig.5. The perturbed angular velocity components and the phase-trajectory near the unperturbed separatrix 
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(a) 

 

   

 

   
  (b) 

 

 
(c) 

  

     
(d) 

 

Fig.6. The Poincaré section of the perturbed system’s phase space  

 2[rad], / G[dimensionless], [kg m / s]l L   : 

The color-gradient (from light-blue to black) corresponds to the initial point position from the low-level of the 

L-momentum (L/G≈-1) to the hi-level of the L-momentum (L/G≈1) – it shows us to which initial-regions belong the 

images of the Poincaré-map 

 

 The Poincaré section (fig.6) demonstrates the presence of the heteroclinic chaos close to 

the separarixes regions, that can be identified as the so-called “chaotic layer” presented the 

“cloud” of the Poincaré points, which do not belong to the regular phase-curves.  

Also it is worth to underline the well-known causes of the “chaotic layer” generation 

[Poincaré (1899), Arnold (1964), Kozlov (1980), Holms (1990)]: homo/heteroclinic orbits can 

produce the heteroclinic nets/plexuses as the set of the intersected split stable and unstable 

manifolds of the original homo/heteroclinic orbit at the action of small perturbations. So, the 

surrounding phase trajectory are compelled to walk round this complex split intersected set of 

the subordinate heteroclinic manifolds – this dynamical effect results in the realization of 

complex tangled phase trajectories, and therefore theirs corresponding “stroboscopic” Poincaré-
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points cover the irregular area of the phase-space, that corresponds to the “chaotic layer”. The 

indicated split intersected subordinate heteroclinic manifolds can be plotted [Doroshin (2012)] as 

the sets of the Poincaré-images (in the positive time-direction t→+∞) and preimages (in the 

negative time-direction t→-∞) of the of the original heteroclinic orbit. Then this images we can 

consider as the perturbed forms (in the corresponding sections of the full phase-space) of the 

unstable manifold of the original heteroclinic orbit; and preimages – as the perturbed forms of its 

stable manifolds. The described first form of the heteroclinic nets is presented at the fig.7. 

 

 

 

 

  

Fig.7. The fragment of the heteroclinic net as the set of the first Poincaré-image (red)  

and the first Poincaré-preimage (blue) of the unperturbed separatrix 
 

3.2.2. The case with non-Hamiltonian perturbations 

Let us now consider the case of the motion of the asymmetrical DSSC under the action of the 

non-Hamiltonian perturbations, including (1.54) and (1.57). As we can see from the expressions 

(1.54) and (1.57), the interconnected form of the considering non-Hamiltonian perturbations can 
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be presented: 

     

      

 

, ;

sign ;

; sup , ;

/ ; /

f DC

F

F U

F U

U U F F

m m t m m e t e F t

F t e e U t e t

e e e e e e

e e e e e e





   

 

 



   
      


    


  


 

 (3.20) 

We can rewrite the expression for the Melnikov-Wiggins function (3.10)  in the form 

with the separation of two parts: 

     1 0 0 0 ,IM w M w W w   (3.21) 

where 

   
 0

0 ;
IL l q tl LM w f g g tf d





    (3.22) 

 
      0 0

0 I Iq t q t
W w f f g dt  







    (3.23) 

The function  0M w  corresponds to the classical Melnikov’s function, and the function  0W w  

represents the Wiggins’ part. Taking into account the structure (1.63) of the perturbation g  it is 

possible to divide the perturbation on Hamiltonian  g
 and on non-Hamiltonian  g

 parts: 

1; ; f DCg g g g g m m m


       


      


 (3.24) 

Basing on the expressions (1.63), (1.61) and (1.32), the following form of the right-part-function 

f  can be obtained: 

 
 

1 1

0

1 2

0 2
;

C C C L
f t

C C
 

 
  


 

where  0 t  represents the unperturbed time-dependence for the relative rotation angular 

velocity; therefore, with the help of the heteroclinic solutions (2.1)-(2.4), we can obtain the 

reduced form of the terms in the parentheses in the expression (3.23): 

 
     

     
0 0

1 2 *;I Iq t q t
f t f f C EB B C

    
 

         (3.25) 

So, the Wiggins’ part of the Melnikov-Wiggins function can be rewritten as  

   0 0W w W w W   (3.26) 

where 

    
 0

0 * ;
Iq t

W w t g dt 






    (3.27) 

     * , constW t m t t dt J  






      (3.28) 

Here it is very important to note that the improper integrals (3.27)and (3.28) are guaranteed 

convergent, because the function   *t   is the even-function exponentially damped to zero 
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at t→±∞ (it follows from the analytical expressions (2.1)-(2.4), and also it is illustrated at the 

fig.4). So, the Melnikov-Wiggins function takes the form: 

     1 0 0 0

IM w M w W w J    (3.29) 

Following further according to the Melnikov-Wiggins formalism, we can obtain auxiliary 

linking formulas for the terms of the Melnikov-Wiggins function. Basing on the expressions 

(1.63), (1.61), (1.32) and on the heteroclinic solutions (2.1)-(2.4), it is possible to present the 

forms of the functions 
   0 0

,I IL lq t q t
f f  which are depended only on time: 

       
0

2 21 1 1 1
sin cos ;IL q t

f G L l l AB p t q t
B A B A

   
       
   

  (3.30) 

            
0

2 2
2 2

2

sin cos 1
,Il q t

l l
f L L r t b t Ap t Bq t

A B C

 
        

 
 (3.31) 

where 

 
 

 

2

2
2

2

C r t
b t

G C r t

 


    

. (3.32) 

From the last formulas and from the heteroclinic solutions (2.1)-(2.4) we easy conclude that 

 0
IL q t

f  is the odd-function, and 
 0

Il q t
f  is the even-function (b(t) also is the even-function). 

For the purpose of expressing the functions  0M w  and  0W w  in the explicit form, 

which is depended only on the w0-argument, we need to rewrite the expressions for the functions 

, ,L lg g g  (defined by (1.63) and (3.24) after substituting of the arguments  0

Iq t  (3.12) with 

the explicit extraction of the w0-harmonic multipliers. This procedure is quite simple, because it 

requires the implementation of usual trigonometric transformations with reductions of similar 

terms. Let us here write the results of the indicated procedure in the general shape
2
, collected all 

of the possible considering cases: 

 
          

 
          

 
          

0

0

0

2

, 0 , 0 ,0

1

2

, 0 , 0 ,0

1

, 0 , 0 ,0

1

cos sin ;

cos sin ;

cos sin ;

I

I

I

L L n L n Lq t
n

l l n l n lq t
n

N

n nq t
n

g C t nw S t nw C t

g C t nw S t nw C t

g C t nw S t nw C t





   




  




  



  








 (3.33) 

where  

                 

                   

, , ,

, , ,

, , , , , ; 0... ;

, , , , , ; , ,

i n i n i n

i n i n i n

C t C L t l t t C p t q t r t t n N

S t S L t l t t S p t q t r t t i L l

 

 

   


   

 (3.34) 

The substitution of the functions (3.30)-(3.33) into the integrals (3.22), (3.27) and improper 

integration using the symmetry properties of the odd- and even-functions gives us the general 

trigonometric polynomial form of the Melnikov-Wiggins function: 

   1 0 0 ;I

trigM w P w J   (3.35) 

                                                           
2
 The possible explicit form of the functions (3.33) we will present below in the framework of an example in the 

section 3.3. 
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where 

          0 0 0 , 0 s, 0 , s,

0

cos sin ; const; const
N

trig c n n c n n

n

P w M w W w J nw J nw J J


       (3.36) 

Constants Js,n and Jc,n are defined by concrete forms of the expressions (3.33) and by the 

corresponding results of the improper integrations
3
 (some of integrals, certainly, will be equal to 

zero).  

It is worth to remark that the form (3.35) of the Melnikov-Wiggins function can be 

characterized as the generalized form collecting all types of the natural perturbations considering 

in this research (i.e. asymmetrical, external magnetic, internal electromagnetic perturbations, the 

internal friction, and polyharmonic signals of the control systems); and, therefore, basing on the 

Melnikov-Wiggins formalism this form describes the possibility of the realization of the 

chaotic/regular motion modes of the magnetized asymmetrical DSSC in the considered general 

case. Here we could note, that the comparative analysis of the result (3.35) relative the previous 

well-known results [Holmes & Marsden (1983); Iñarrea & Lanchares, V. (2000); Iñarrea (2003); 

Iñarrea, Lanchares at al. (2003); Kuang (2001), (2006); Leung (2004); Baozeng (2007); Bao-

Zeng (2008); Or (1998)] is presented in the next section of this paper. 

So, as the local conclusion we can underline the simple polyharmonic structure of the 

Melnikov-Wiggins function (3.35), which implies the uncountable set of simple roots – this 

circumstance formally proves in the general case the presence of the heteroclinic chaos in the 

system dynamics. The presence of the heteroclinic chaos in the asymmetrical DSSC/gyrostat 

dynamics is well known fact, which was investigated in different formulations in many works. 

Therefore, here it is needed to give some comments about the new providing in this work 

research in the comparison with the known previous tasks: 

1. Firstly, in this research the general and most complete constructional and mass-inertia 

asymmetry of the DSSC (fig.1) is considered. The corresponding mechanical and 

mathematical models are constructed, including the Hamiltonian form and important 

conjunctional expressions for all types of returbations. 

2. Secondly, the case of the motion of the magnetized DSSC in the constant magnetic field 

(it corresponds to the equatorial circle orbits of the Earth/planets) at the implementation 

of the important regime of the cylindrical precession is investigated. The new 

corresponding heteroclinic solutions [Doroshin (2015)] are used for the investigation of 

the chaotic aspects – these solutions generalize the analogous heteroclinic solutions for 

the free DSSC/gyrostats.  

3. In the considering case, the heteroclinic action-angle variables for the rotational phase are 

obtained in the exact analytical form. These heteroclinic action-angle variables allow the 

correct application of the Melnikov’s-Wiggins’ formalism; as the result the simple 

general analytical polyharmonic form of the Melnikov function was found.  

4. In the contrast to the previous works, in this research the real natural forces and torques 

are considered, including the friction between the coaxial DSSC bodies, electromotor’s 

                                                           
3
 The convergence of the integrals can be proved by numerical and/or analytical calculations (an example will be 

given below in the next section of the article). 
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torques applied to the rotor from the platform by internal engines, the 

counterelectromotive force/torques in such internal engines due to the rotor’s rotation, 

internal plyharmonic and external magnetic perturbations. All of them are the natural 

instruments of the motion parameters changing and the chaos control/avoidance.  

3.3. The heteroclinic chaos suppression in the DSSC dynamics 

Let us investigate the possibility of the suppression/control of the heteroclinic chaos in 

the perturbed DSSC system. First of all, we must define the “natural toolkit” which in principal 

can affect the heteroclinic chaos characteristics (e.g. the maximal amplitude of the chaotic 

oscillations, the location of the area of the chaotic dynamics in the phase space, the thickness of 

the chaotic layer, and, ultimately, the presence/avoidance of chaos). Certainly, only controlled 

forces/torques and DSSC parameters can be selected on the roles of regularizing factors 

suppressing the chaos. Therefore, some specific set of internal torques (the corresponding 

coefficients which are available to change at the preparation of space missions) and DSSC 

parameters (kinematical, dynamical, mass-inertial, geometrical and other) are useful for the 

chaos control. So, below we try to apply these instruments to the chaos possible suppression, 

considering two main cases: the Hamiltonian case of perturbations, and the non-Hamiltonian 

one. 

In the case with Hamiltonian perturbations we have the Melnikov-Wiggins function 

(3.17) which represents the pure trigonometric polynomial without any free terms (additional 

constants) – this fact provides the presence of simple roots of the Melnikov-Wiggins function in 

any considered case of the Hamiltonian perturbations and parameters of the DSSC motion. 

Hence, the elimination of the heteroclinic chaos in the considered cases with Hamiltonian 

perturbations is impossible – at least, it follows from the results of the Wiggins formalism 

application to the considered heteroclinic task.  

Now we describe the cases of the asymmetrical DSSC attitude motion at the action of the 

non-Hamiltonian perturbations. Applying the trigonometric polynomial form (3.35) of the 

Melnikov-Wiggins function, we can conclude that the condition of the absence of its simple 

roots can be written as the inequality  

  0trigAm P w J  (3.37) 

where the function Am(•) means the estimation of the amplitude of the trigonometric polynomial 

(as the maximum positive value on the corresponding period). Here it is worth to note that the 

condition (3.37) provides the shift of the graph of the trigonometric polynomial  0trigP w  along 

the ordinate-direction, and the roots are vanished. There is no difference between the shift 

directions (it can be fulfilled up or down the ordinate) and, hence, the sign of the constant J  is 

not important. Thus the inequality (3.37) is represents the condition of the heteroclinic chaos 

suppression and also defines the system “critical” parameters (constructional, kinematical, 

dynamical etc.) which “disable” the heteroclinic chaos.  

The similar conditions for other cases of the DSSC motion also are known [Iñarrea 

(2003); Iñarrea & Lanchares, V. (2000); Kuang (2001), (2006); Leung (2004); Baozeng (2007); 

Bao-Zeng (2008); Or (1998)]. Here we have to say, firstly, that basing on the Melnikov-Wiggins 

formalism the chaos suppressing condition, analogous to the expression (3.37), was obtained in 

the paper [Kuang (2001)] at the consideration of the task of the asymmetrical gyrostats attitude 

motion under the action of external dissipative torques and monoharmonic perturbations – the 
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chaos suppressing condition [Kuang (2001)] represents the particular case of the generalizing 

formula (3.37) and corresponds to the monoharmonic form (N=1) of the trigonometric 

polynomial (3.36). Secondly, the similar monoharmonic condition was obtained based on the 

Melnikov-Wiggins formalism in [Iñarrea M., Lanchares V., Rothos V. M., Salas J. P. (2003)] 

where the harmonic variability of the inertia moments and the external dissipative torque were 

considered. Related monoharmonic conditions are appeared among the research results in works 

[Kuang (2006); Leung (2004), (2007)] where the perturbed system are investigated with the help 

of the Melnikov–Holmes–Marsden (MHM) integrals [Holmes & Marsden (1983)]. Criteria of 

chaotic rotations in the monoharmonic form were formulated by means of the classical Melnikov 

integral in works [Iñarrea & Lanchares (2000); Baozeng (2007); Bao-Zeng (2008); Or (1998)]. 

Also it is possible to mention the aspiration [Aslanov & Yudintsev (2012), (2014)] to the 

fulfillment of the analysis of the asymmetric DSSC chaotic motion with the synthesis of 

corresponding chaos suppressing conditions, but here we have to state, that the Melnikov’s-

Wiggins’ formalism in these works [Aslanov, Yudintsev (2012), (2014)] was used incorrectly – 

this circumstance invalidates the corresponding published results.  

 So, we can locally conclude that the above mentioned form of the suppressing condition 

is quite useful in the research of the space flight dynamics – this monoharmonic form is the 

particular case of the generalized polyharmonic form (3.37) of the chaos suppressing condition, 

obtained in this work. Now let us give examples of the chaos suppressing techniques, which are 

based on the general condition (3.37). 

 

The dissipative technique of the heteroclinic chaos suppressing. In purposes of the 

illustration of the obtained general results and conditions let us analytically consider an example 

of the asymmetrical magnetized DSSC dynamics with the non-Hamiltonian perturbation at the 

following values of the perturbation’s parameters: 

0; 0; 0; 1; 0; 0.B m l Fe e e c e e e e s           I  (3.38) 

Then after elementary transformations the following coefficients (3.34) can be written taking 

into account assumptions (3.38), basing on expressions (1.63), (1.32) and substituting the 

heteroclinic solutions: 

         

          

                

                 

,1

,1

2 2 2 2 2 21
,2

2 2 2 2 2 21
,2

cos sin ;

sin cos ;

sin 2 cos 2 ;
2

sin 2 cos 2 ;
2

L m

L m

B
L

B
L

Q
C t e Bq t t Ap t t

G

Q
S t e Bq t t Ap t t

G

e A
C t B q t A p t t A B p t q t t

AB

e A
S t A B p t q t t A p t B q t t

AB

 

 

 

 


   


   


     

 

     


 (3.39) 
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         

          

 
 

            

 
 

             

,1

,1

2 2

,2 1

2 2

,2 1

sin cos ;

cos sin ;

cos 2 2 sin 2 ;
2

sin 2 2 cos 2 ;
2

l m

l m

l B

l B

Q
C e b t Bq t t Ap t t

G

Q
S e b t Bq t t Ap t t

G

b t
C t e A p t q t t p t q t t

b t
S t e A p t q t t p t q t t

 

 

 

 


   


  


    

 

    


  (3.40) 

       

        

              

               

,1

,1

2 2

,2 1

2 2

,2 1

cos sin ;

sin cos ;

1
sin 2 2 cos 2 ;

2

1
cos 2 2 sin 2 ;

2

m
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B

B

Q
C e Bq t t Ap t t

G

Q
S e Bq t t Ap t t

G

C t e A p t q t t p t q t t

S t e A p t q t t p t q t t

 

 

 

 










   


   


     

 

    


 (3.41) 

       

 
 

   

 

2 21
,0

2 2

,0 1

,0

;
2

;
2

0;

B
L

l B

e A
C t A B p t q t

AB

b t
C t e A p t q t

C t


    




     

 



 (3.42) 

Indicated groups of the explicit coefficients (3.39)-(3.42) make it possible to fulfill the 

integration and to write the following amplitudes for the harmonics of the trigonometric 

polynomial (3.36), which corresponds to the Hamiltonian part of the Melnikov-Wiggins function 

(here we use the properties of odd and even functions, so the terms from (3.39)-(3.42) in square 

brackets give the zero-result at the improper integration): 

             

             

, , , * ,

, , , * ,

0;

const 0

c i l L i L l i i

s i l L i L l i i

J f t C t f t C t t C t dt

J f t S t f t S t t S t dt

 

 














                



        







 (3.43) 

As the result, the biharmonic form of the trigonometric polynomial (3.36) is followed, 

where we can explicitly select the parts, corresponding to the types of the small perturbations 

(indicating with multipliers em and eB): 

       0 ,1 0 ,2 0 ,1 ,1 ,2 ,2sin sin 2 ; / ; /trig m s B s s s m s s BP w e J w e J w J J e J J e     (3.44) 

The non-Hamiltonian part of the Melnikov-Wiggins function in the considering case is 

formed by the small dissipative internal interaction (including the liquid-type friction and the 

torque from the counterelectromotive force): 

 m e t     (3.45) 

The corresponding integral (3.28) takes the form: 
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    *; constJ e J J t t dt   




      (3.46) 

So, basing on the condition (3.37), the expressions (3.44) and (3.46) compose the chaos 

suppression criterion. Also from the condition (3.37) the “critical” value of the dissipation 

follows as the value of the coefficient e  which corresponds to the fulfilment of the limiting 

equality in the unstrict inequality (3.37): 

  0trigAm P w
e

J
   (3.47) 

At the critical dissipation value (3.47) we have the suppression of the heteroclinic chaos as the 

implementation of the separatrix splitting without intersections of stable and unstable manifolds 

of the heteroclinic orbit. Certainly, we did not obtain here the final analytic representations for 

the integrals (it can be provided in the separated research), but we wrote them in the closed form, 

that allows to provide the clear numerical simulation of the chaotic properties of the 

asymmetrical DSSC in the considering case. 

 Let us show some numerical results for the magnetized asymmetrical DSSC dynamics 

simulation with the formulation of possible suggestions for the practical application. 

Beforehand, we should note that the phase portrait contains two main heteroclinic orbits 

(the “upper” and the “lower” separatrix in the Serret-Andoyer phase-space) at the same system’s 

angular momentum (G) and energy level (T ) of the saddle-points. These two separatrices fully 

correspond to the heteroclinic solutions (2.1)-(2.6) and to two sets of the initial conditions for the 

two heteroclinic polhodes on the ellipsoid of the angular momentum [Doroshin (2012), (2013b), 

(2015)].  

So, now we numerically consider the case of the asymmetrical DSSC motion at the action 

of the perturbations with the following coefficients: 

0.15; 1; 0; 0.B l m Fe e e e e e e         I
 

The DSSC inertia-mass parameters are: 

2

1 1 2 2 2

2 2

2 2 2 2 2 2 2 2

ˆ ˆ ˆ5; 4; 15; 10; 6 [kg m ];

ˆ ˆ;

A C A B C

A A M OP B B M OP

     

     
 (3.48) 

The motion initial conditions for the upper separatrix are: 

0 0 0 0 *

2 2 2

1.5; 0; 3.15597; 0.59403; 2.63527 [rad/ s];

15; 45.29504 [kg m / s]; 15, 91.74372 [kg m / s ],

p q r

G Q T

     

       

 (3.49) 

and for the lower separatrix: 

0 0 0 0 *

2 2 2

2.25894; 0; -1.95929; 5.70929; 2.63527 [rad/ s];

15; 45.29504 [kg m / s]; 15, 91.74372 [kg m / s ].

p q r

G Q T

     

       

 (3.50) 

Firstly we present the numerical results of the motion modelling without the internal 

dissipation ( 0e  ). As can we see at the corresponding figures (fig.8-10), the complex behavior 

of the system takes place, that shows the chaotic properties of the dynamics, including aperiodic 

oscillations (fig.8-a) and the complex phase trajectories (fig.8-b-d) which “tie themselves in 
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knots” [Holms P. J. (1990)]; also we see the chaotic layer (fig.9), and the heteroclinic net (the 

reciprocal intersections of stable and unstable manifolds of the pair of heteroclinic separatrices – 

fig.10). 

 

 

(a) 

 
( b) 

 

 
(c) 

 
(d) 

 

 

(e) 

Fig. 8. The angular velocity and the phase-trajectories of the system close to the unperturbed separatrix: 

(a) – the angular velocity components (dots – heteroclinic solutions, lines – perturbed solutions); 

(b), (c) – the polhodes in the p-q-r 3D-phase-space of the angular velocity components; 
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(d), (e) – the corresponding phase-trajectories in the Serret-Andoyer phase-space 

 

 

 

 

(a) 

 

    

(b) 

 

(c) 

 

(d) 

 

Fig.9. The Poincaré section of the perturbed system’s phase space  0m   

  2[rad], / G[dimensionless], [kg m / s]l L    
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(a) 

 
(b) 

 
(c) 

 

     
(d) 

 
(e) 

 
(f) 

Fig.10. The first Poincaré-images (magenta, red) and the first Poincaré-preimages (black, blue) of the unperturbed 

heteroclinic separatrices (upper, lower) 
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Now we present the motion modelling results at the action of the dissipative torque (3.45) 

in the case of the critical dissipation. It is quite understandable, that at the presence of the pair of 

the heteroclinic orbits, the resulting critical dissipation is defined by the supremum of the critical 

coefficients e  (3.47) separately calculated for the upper separatrix  upe  and for the lower 

separatrix  lowe : 

 sup ,up lowe e e    (3.51) 

So, we have 0.623313upe  ; 0.000219lowe  ; 0.623313.e   

 

 
(a) 

 

 

 
(b) 

  

Fig. 11. The phase-trajectory close to the upper separatrix (at the critical e ): 

(a) – the polhode in the p-q-r 3D-phase-space of the angular velocity components 

(b) – the phase-trajectory in the Serret-Andoyer phase-space 

 

 

Fig. 12. The Poincaré section of the perturbed system’s phase space (at the critical e ) 

  2[rad], / G[dimensionless], [kg m / s]l L    
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(a) 

 
(b) 

 

(c) 

    

      
       (d) 

 

 
(e) 

       

      

      (f) 

Fig. 13. The heteroclinic net fragment as the set of the first Poincare-images (magenta, red) and the first Poincare-

pre-images (black, blue) of the unperturbed separatrices (upper, lower) at the critical e  
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As can we see from the numerical modelling results (fig.11-13), the regularization of the 

original chaotic motion regime (without suppressing torques it was chaotic (fig.8-10)) is 

implemented in the sense of the dissipative trend in the dynamics: we see the twisted up polhode 

(fig.11-a), damped oscillations in the Serret-Andoyer phase space (fig.11-b), and the 

“concentrated” Poincaré mapping (fig.12).  

The most interesting aspect of the motion regularization is presented at the (fig.13), where 

we can observe the separation of manifolds of the heteroclinic trajectory without reciprocal 

intersections; e.g. at the frame (fig.13-a) we see splitting the “upper” separatrix into 

nonintersecting manifolds (magenta and black curves), and at the frame (fig.13-b) the analogues 

nonintersecting separation of the “lower” separatrix is shown (red and blue curves). So, this is 

the main demonstration and the confirmation of the local chaos suppression, which is 

implemented with the help of the natural forces/torques (the internal coaxial-bodies-system 

friction, electromotor’s torques, counterelectromotive forces/torques) – there are no intersections 

between the split manifolds of the heteroclinic trajectory. But, we should note at the same time, 

that the intersections of split manifolds belonging to different heteroclinic trajectories are 

possible: as can we see (fig.13-c-f), the intersections of perturbed stable manifolds (black and 

blue curves) of the upper and lower separatrices, and also the intersections of perturbed unstable 

manifolds (magenta and red curves) are available. This circumstance, in fact, means the presence 

of the heteroclinic net in the global scale at the realized local heteroclinic chaos suppression in 

the Melnikov-Wiggins sense (concerning nonintersecting split manifolds of one single 

heteroclinic trajectory/orbit). 

Also one actual dynamical task here can be formulated – it is the task of finding such 

dynamical conditions, which are “neutral/insensitive” to the chaos suppressing in the indicated 

Melnikov-Wiggins sense at the action of sufficiently large dissipative torque. It means the 

nonoperability of this chaos suppressing technique. As it follows from the above considered case 

with the dissipative torque (3.45), the main heteroclinic chaos suppression is fulfilled through the 

constant part of the Melnikov-Wiggins function generated by the integral (3.46). This integral 

can take the zero-value at some parameters of the system, and in such cases basing on the 

Melnikov-Wiggins methodology the heteroclinic chaos suppression is impossible, because the 

simple roots of the Melnikov-Wiggins function are not vanished. The corresponding system’s 

parameters can be indicated as the “insensitive” to the influence of the chaos suppressing torque. 

So, taking into account (2.1) and (2.4), the integral (3.46) can be reduced to the form 

         * *J t t dt y t y t dt   
 

 

       

Then the condition of the zero-value of the integral J  can be written as the expression  

   2

* y t dt y t dt
 

 

   

and then with the help of (2.6) and (2.7) we obtain the condition of the “insensitivity” of the 

system’s heteroclinic chaotic dynamics to the influence of the chaos suppressing torque (3.45) 

  
 2

*

2 2

2
AB

y t dt
B C A C

 





 

  (3.52) 

The analytical expression (3.52) defines sets of the system’s parameters (and also initial 

conditions) which lead to the undamped heteroclinic chaos; we can use this condition for 
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analytical finding the “insensitive” parameters – it is the complex task for separated research. We 

can also numerically evaluate the value of the integral J . Here, e.g., let us to present the 

results of the numerical calculations (fig.14) at the parametric variation of the   value and at 

following inertia-mass parameters (3.48), and for fixed values p0 = 1.5 [1/s], Q = -15 [ 2 2kg m / s ].  

As can we see, the zero-value of the integral J  takes place at the value 

4up  [kg·m
2
/s] for the upper separatrix, and at 17low   [kg·m

2
/s] for the lower separatrix. 

Therefore, the values  ,up low   define the system’s parameters sets “insensitive” to the chaos 

suppressing (with the help of the dissipative torque (3.45)), that formally corresponds to the 

infinitely large value of the “critical” dissipation e  (3.47), that is, certainly, inappropriate and 

senselessly for any technical application. 
 

  

Fig.14. The J  value as the dependence on  : 

for the upper separatrix – the blue curve; for the lower 

separatrix – the red curve 

Here it is very important to note the 

“limit”   values  * *,up low   correspond 

to the bifurcation values which change the 

type of the heteroclinic polhodes and 

solutions [Doroshin (2012)]. Also at these 

values the infinite exponential growth of 

the magnitude J  takes place (this is 

clearly seen from the fig.14). So, these 

values  * *,up low   in fact are limiting for 

the typical phase portrait with two 

heteroclinic separatrices; and exceeding 

these values lead to the disappearances of 

the analyzed form of the phase portrait (we 

will not consider in this work the case 

after the bifurcation). For this reason all of  

the obtained results are applicable in the interval  * *,low up   . 

 At the end of the consideration of the described dissipative chaos suppression technique 

we must underline, that this technique is quite natural, simple and realizable, but it has the big 

disadvantage for the application to the spin-stabilization of the DSSC in the considering 

cylindrical precession regime. It is easy to understand, that the energy of the longitudinal rotation 

of the coaxial DSSC bodies (which is described by the longitudinal angular velocities r(t) and 

(t)) is decreased at the action of the dissipation (3.45), and for the corresponding conservation 

of the angular momentum the nutation angle must increase. Moreover, the dissipation can bring 

the longitudinal angular velocities to the near-zero values, and the nutation angle in this case can 

achieve quite large amplitude’s values comparable with /2. In the practice the last remark 

means the realization of tilting motions with losses of the spin-stabilized position in the inertial 

space – this is the worst dynamical result in the framework of the space mission implementation. 

Therefore, alternative suppressing techniques are desirable for providing the heteroclinic 

chaos suppression without the worsening of the DSSC natural dynamics. 

 

The impulse technique of the heteroclinic chaos suppression. Let us introduce into our 

consideration an impulse technique of the homo/heteroclinic chaos suppression. This technique 
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is based on generating the small single (or multiple) impulse, which formally is the part of the 

common interaction of the main body and the rotor of the DSSC, that can be took into account in 

the torque (3.20) through the function F(t). In our research we will consider as an example the 

simplest case of the impulse interaction, when it is formed as the unit-impulse acting between 

time-moments Ts (the start) and Tf  (the finish): 
 

 

   

     

;F

F s f

m m t e F t

F t e t T t T

 
  


       

 (3.53) 

 

 
Fig.15. The unit-impulse form 

where  t  is the Heaviside function. Then we can analytically calculate the corresponding 

integral (3.28): 

          *;

f

s

T

F s f

T

J e J J t F t dt y t dt T T    




         (3.54) 

The critical value of the impulse is defined by the value of the coefficient eF: 

      0sup , ; ; ,up low sep sep

F F F F trige e e e Am P w J sep up low    (3.55) 

where, as in the previous results, we take into account the both separatices (upper and lower). 

Now it is worth to present the numerical modelling results (Fig.16) for the demonstration 

of the local regularization (the local chaos suppression) of the dynamics of the DSSC with the 

following parameters (3.48)-(3.50) at Ts=0 [s] and Tf=20 [s]. The corresponding critical 

parameters have the values: 1.64539; 0.002; 1.64539.up low

F F Fe e e    

First of all, from the Poincaré maps (fig.16) we can see the upward relocation of the area 

of the heteroclinic net (the corresponding chaotic layer) in the phase space with the growth of the 

eF-value; also some small relative climb of the right part of the phase portrait takes place. 

Moreover, the “characteristic size” of the heteroclinic net (the width of the chaotic layer) is 

decreased with the growth of the parameter eF. These circumstances mean that the initial 

heteroclinic net (which is corresponding to the perturbed case without the impulse torque acting) 

is locally suppressed and extruded up. So, the impulse suppressing technique, in fact, affects the 

phase space through the small local rising of the positions of the unstable manifolds of the split 

separatrices and small increasing Δ-values. It also confirms the previous result, that if the rotor 

speed increases, then the chaotic motion will turn into the regular one [Cheng (2000); 

Tong (1995)]. 

It is worth to note here that, in the comparison with the dissipative chaos suppressing 

technique, the impulse suppressing technique do not change the qualitative form of the phase 

portrait; and we do not see the “concentrated” Poincaré map (like at the fig.12). 
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(a) 0Fe   (b) 1.64539F Fe e    (c) 1.5 2.46809F Fe e    

 

Fig.16. Poincaré sections at the zero (a) /critical (b) / postcritical (c) impulse amplitude 

 

 

 

       

(a) 

 

(b) 

Fig.17. The local angular motion regularization at the critical 1.64539F Fe e   

The presented graphs (last fig.17) shows the regularization of the chaotic motion after the 

impulse creation – the motion before t=0 corresponds to the chaotic regime, which was presented 

in the previous case (fig.8): we can see the transition to the regular oscillations; also from the 

figure (fig.16) follows that the heteroclinic net (and the corresponding chaotic layer) is moved to 

the upper zone of the phase portrait, that rids the initiated regime from the caption into the 

heteroclinic chaos. Also at the figures (fig.18-a,b and fig.19-a,b) the heteroclinic chaos local 

suppression in the indicated above Melnikov-Wiggins sense is demonstrated. But at the same 

time the heteroclinic net in the global scale is preserved, that can be seen from figures’ fragments 

(fig.18-c-f, fig.19-c-f) as the intersections of split manifolds belonging to different heteroclinic 

trajectories. 
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(a) 

 

 
(b) 

 
(c) 

 

 

 

 

 

 

 
(d) 

 
(e) 

    
(f) 

Fig.18. The heteroclinic net fragment as the set of the first Poincare-images (magenta, red) and the first Poincare-

preimages (black, blue) of the unperturbed separatrices (upper, lower) at the critical 
Fe  
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Fig.19. The heteroclinic net fragment as the set of the first Poincare-images (magenta, red) and the first Poincare-

preimages (black, blue) of the unperturbed separatrices (upper, lower) at the poscritical 1.5F Fe e   
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The limiting case is also interesting, when the boundary time-moments of the impulse 

switching (on/off) are infinitely separated from each other  ; .s fT T     Then the integral 

follows 

 
  2 2

2
AB

J y t dt
B C A C






  
 

  (3.56) 

This case also formally can be applied in the task of the chaos suppression. We can additionally 

indicate this case as, in fact, the case with the action of the small constant spinup-torque 

[Neishtadt (2000)]. In [Neishtadt (2000)] the action of such small constant internal spinup-torque 

was considered in the sense of the negative phenomenon, corresponding to the tilting motion 

initiation at the separatrix crossing [Neishtadt (2000)]: “The reason is that, during rotor spinup, 

the phase trajectories of the system, lying on the two-dimensional constant angular momentum 

surface, may cross an instantaneous separatrix of the unperturbed problem (a gyrostat with a 

constant relative angular velocity of rotation) and reach qualitatively different domains of final 

motion” [Neishtadt (2000)]. The indicated reason [Neishtadt (2000)] can be considered as the 

form of heteroclinic nets arising. This is the negative aspect for the DSSC dynamics, but this 

aspect is inevitable at the presence of small perturbations, therefore, the realization of the chaotic 

motion is also inevitable. At the same time, our main aspect of the consideration of small spinup-

torque is to develop the chaos suppressing “regularizing” scheme, which can parry the local 

caption into chaotic regime. In this connection, we can use this spinup impulse torque for local 

suppressing the heteroclinic net area, and for moving it from the initiated dynamical regime in 

the phase space. Precisely this ideology follows from the Melnikov-Wiggins formalism as an 

attempt of the local separation of the split separatrices’ manifolds without their intersections. 

It is important to note that the multiple-impulse-technique also can be applied. The 

corresponding consideration of all aspects of this technique is completely similar to the mono-

impulse scheme. Moreover, we can take any complex form of the impulse 

(linear/polynomial/sinusoidal and other forms).  

As the limiting infinitely-multiple-impulse-scheme can be indicated the usual sinusoid or 

other continuous harmonic/periodical time-functions, but it is clear, that in such cases we obtain 

(after integrating (3.28)) the harmonic/periodical additional term to the main harmonic 

Melnikov-Wiggins function’s part  0trigP w , instead the constant term like J . This result 

returns us to the pure polyharmonic form of the Melnikov-Wiggins function, and, therefore, the 

homo/heteroclinic chaos suppression will be impossible – this case we need to consider as the 

return to the classical dynamical system with chaos at small periodical perturbations. 

 

The magnetic technique of the heteroclinic chaos suppression/avoidance. Let us now 

consider the motion regularizing approach which differs from the heteroclinic chaos suppressing 

with the help of the Melnikov-Wiggins methodology. This approach involves the global change 

of the type of the phase portrait itself, without the construction of functions and conditions of 

local heteroclinic orbits splitting. So, in order to get out of the chaotic layer area, let us change 

the internal magnetic properties of the DSSC with simultaneous changing the form of the system 

phase portrait. The aim here is to move in the changed phase portrait the dangerous heteroclinic 

region (with the corresponding heteroclinic net) from the current phase trajectory of the initiated 

dynamical regime. Such relocations of the heteroclinic regions eliminate causes of the 

heteroclinic chaos initiation.  
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Together with the initiation of the large angular velocity of the rotor [Cheng (2000); 

Tong (1995)], an increase of the magnetic torque value (1.47) contributes to the motion 

regularization. It can be confirmed by the heteroclinic solutions (2.1) and also by the general 

solutions [Doroshin (2013b)]: from these solutions the presence of the additional “rotational 

effect” follows, which is described by the corresponding “magnetic term” orbE mB K  . 

Moreover, this effect can be considered as the tantamount stabilizing factor [Doroshin (2013b)] 

in comparison with the gyroscopic stabilization by the large angular velocity of the rotor. So, 

basing on this dynamical symmetry, we can change in the dynamical sence the gyroscopic 

stabilization on the magnetic stabilization (and vice versa) – this change is defined by the choice 

of parameters Δ and E (or we can fully compensate the mutual actions of the magnetic and 

gyroscopic torques if 0E    ). Therefore, switching values of the “magnetic term” can 

provide the natural regularization of the hteroclinic chaos due to the phase portrait’s form 

replacement with moving the separatrix-region from the initiated dynamical regime.  

So, this technique is based on the fast transitions between the natural forms of the 

system’s phase portraits with using their corresponding dynamical properties. We can present 

some numerical results for illustration of the indicated technique (fig.20). Here it is needed to 

define the following form of the magnetic torque ( orbQ mB  ): 

   0
ˆ

s fQ Q Q t T t T      
 

 (3.57) 

that corresponds to switching the DSSC intrinsic magnetic dipole moment (m), where    is 

the Heaviside function, 0Q  is the initial value of the magnetic torque, ,s fT T   are the time-

moments of the additional magnetic torque Q̂  enabling/disabling (the start/finish). 

We should give some explanations for our modelling results (fig.20). The components of 

the angular velocity (frames a1-d1) before the initiation of the additional magnetic torque Q̂  

fulfill the irregular oscillations at  , st T   (at the frame c1 this interval is not depicted). The 

initiation of the torque Q̂  at the time-moment st T  changes the current chaotic regime on the 

regular one. After the torque Q̂  disabling at the time-moment ft T  the current regime can jump 

to new regular regimes (the frames a, d), or it can proceed to new chaotic modes (the frames b, 

c). The corresponding polhodes (frames a2-d2) were plotted for the time-interval  ,st T  , 

which include the time-moment ft T  of the torque Q̂  disabling and the subsequent evolutions 

of the dynamics; these polhodes show us regular modes started at t=Ts with the corresponding 

jumps to the new regular or chaotic regimes. Also the Poincaré maps (frames a3-d3) are very 

important; these maps are plotted starting at st T  and basing on (3.19). The indicated Poincaré 

maps contain the effects of switching between the forms of the phase portraits. 
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Fig.20. The results of the magnetic technique of the motion regularization  
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The presented numerical results (Fig.20) were obtained at the parameters from the table. 

Table. The main modelling parameters 

Frames/ 

regularization 

types 

(ai) 

“the short-time final 

regularization” 

(bi) 

“the short-time 

regularization with 

the return to the 

heteroclinic chaos” 

(ci) 

“the long-time 

regularization with 

the return to the 

heteroclinic chaos” 

(di) 

“the permanent final 

regularization” 

2 2ˆ , kg m / sQ   -100 -200 -200 -200 

Ts, s 0 0 0 0 

Tf, s 10 40 450 +∞ 

Common 

parameters 

The inertia moments (3.58); 

0 0 0 0 *

2 2 2

0

0.15; 1; 0;

1.4, 0, 3.15597, 0.59403, 2.63527 [rad/ s];

15, 45.29504 [kg m / s]; 15 [kg m / s ],

B m d Fe e e e e

p q r

G Q



 

     

    

      

 

 

The most interesting case is presented at the frame c3 (fig.20), where we can see, in fact, 

the superposition of two classical forms of the system’s phase portrait (here the lower blue part 

of the heteroclinic regions corresponds to the Poincaré-images at ,s ft T T   , and the upper black 

heteroclinic regions – to the Poincaré-images at  ,ft T  ). So, these separated in the time 

parts of the phase portrait represent, per se, the main instrument of the heteroclinic chaos 

suppression/avoidance – switching between these parts immediately moves away the dangerous 

heteroclinc region from the current dynamical regime. Certainly, as can we see, the different 

results can be obtained with the help of the considered “magnetic” technique: the temporary or 

permanent final chaos suppression/avoidance is possible. 

 

The rotational “spinup-capture” technique of the heteroclinic chaos 

suppression/avoidance. We can additionally mention one more technique of the possible 

heteroclinic chaos avoidance at the realization of DSSC motion, based on the rotor-body 

“spinup-capture” procedure [Doroshin (2009), (2014a,b)] in the three-body-DSSC scheme. For 

the implementation of this procedure we need add to the considered DSSC-two-body-system the 

additional opposite “conjugated rotor” (this second rotor can be small and placed into the main 

DSSC-body). Then in such DSSC-three-body-systems it is possible to fulfill these rotors 

“conjugate spinup” as the process of the spinup of the conjugated rotors in opposite directions up 

to desired values of the relative angular velocity with the help of identical internal torques. After 

this spinup, for instantaneous changing the system phase portrait, we can implement the 

«opposite rotor capture» (as the immediate stop/deceleration of this rotor relative the main body) 

– this operation transforms the DSSC-three-body-scheme back to the DSSC-two-body-system, 

but the main body and the rotor immediately take the modified/redistributed values of the 

angular momentum at the corresponding “jumping” phase portrait modification. In this way we 

can immediately move away the dangerous heteroclinic region from the current dynamical 

regime – this circumstance defines the possibility of the avoidance of the heteroclinic chaos. 

 

Other chaos suppressing techniques and related tasks. Certainly, other chaos 

controlling/suppressing techniques can be used; most of them have the dissipative nature like the 

“external/internal resisting medium” [Baozeng Y., Jiafang X.; El-Gohary A.; Iñarrea M.; 
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Kuang J.L.; Leung A.Y.T.; Meechan P.A., Asokanthan S.F.; Zhou L.]. Now, summarizing our 

descriptions of the DSSC motion investigation, we ought to indicate corresponding well-known 

problems and results in the framework of the nonlinear regular/chaotic dynamics 

[Anishchenko V.S., Astakhov V.V. at al.; Bainum P.M. at al.; Beletskiĭ V.V. at al.; Boccaletti S. 

at al.; Burov A.A.; Celletti A., Lhotka C.; Chaikin S.V.; Doroshin A.V.; Ge Z.-M., Lin T.-N.; 

Guckenheimer J.; Gutnik S.A.; Hall C.D. at al.; Holmes P. J.; Kinsey K. J.; Lin Yiing-Yuh, 

Wang Chin-Tzuo; Marsden J.E.; Meechan P.A., Asokanthan S.F.; Meng Y. et al.; Nazari M., 

Butcher E.A.; Pecora L.M. at al.; Rubanovskii V.M.; Sarychev V.A., Mirer S.A.; Seo at al.; Vera 

J.A.; Wiggins S.; Zhou at al.], including aspects of the motion stabilizing/detumbling, avoidance 

of parasitic/spurious harmonics, the system bifurcations, the direct/feedback/time-delayed 

control (and even the control using neural networks), and, certainly, the chaos synchronization, 

strange chaotic attractors detecting, etc. 

 

4. Comments and discussions 

 So, in this work the motion chaotic aspects of the magnetized asymmetric DSSC was 

considered with the wide use of the Melnikov’s-Wiggins’ methodology/formalism, which 

presents the quite effective analytical approach to the homo/heteroclinic chaos 

detection/suppression. At the same time, some important features of the Melnikov’s-Wiggins’ 

methodology must be taken into account. 

1). Firstly, for the considered heteroclinic DSSC dynamics we have several separatrices 

in the phase space (two sets of the “upper” and the “lower” heteroclinic separatrices orbits in the 

Serret-Andoyer phase-space) – these heteroclinic orbits can be split in different ways, and 

corresponding heteroclinic chaos can be suppressed at different conditions. Therefore, to analyze 

of the heteroclinic chaos arising/suppressing we should consider simultaneously and together all 

of the heteroclinic orbits from the investigated phase space region. Then the final conditions of 

the chaos suppression follow as “supremal” suppressing values (parameters of the dissipation, 

impulse magnitudes, etc.) for all heteroclinic orbits.  

2). Secondly, the split stable and unstable manifolds of one heteroclinic orbit have not 

intersections at the fulfilled chaos suppression, but they can have intersections with the split non-

intersecting manifolds of other heteroclinic orbits. This circumstance, consequently, preserve the 

existence of the heteroclinic net in global; and therefore the chaos in global is not suppressed (as 

opposed to homoclinic cases). Certainly, this heteroclinic net will differ from the corresponding 

one before the action of suppressing factors; but in any case, we can take as the result the 

changed location and changed properties of the chaotic layer in the phase space, so the chaotic 

dynamics does not vanish in global. The further evolution of the changed heteroclinic net at the 

action of suppressing factors in global, generally speaking, is indeterminate. 

 3). In the third place, it is well-known fact, that at the construction of the Melnikov’s 

formalism [Melnikov; Arnold; Wiggins] the dynamical conditions for the homo/heteroclinic 

trajectories on infinite limits  t    are very important. In the homoclinic cases these 

conditions are equal: homoclinic trajectories start and finish in the single original homoclinic 

point, so the “distances” between the unperturbed original homoclinic point and perturbed one is 

the same at t    and at t   . But for heteroclinic cases these dynamical conditions on 
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infinite limits can be differ so far as the heteroclinic trajectories start (at t   ) in one point and 

finish (at t   ) in the another point; and, moreover, distances between their unperturbed and 

corresponding perturbed positions are not obliged to be equal. So, for the heteroclinic cases the 

guaranteed fulfillment of the Melnikov’s formalism is possible at the additional conditions of the 

equality of distances between unperturbed and perturbed positions of the two different 

heteroclinic points (e.g. at the “symmetry” of deformations of the split manifolds of heteroclinic 

trajectory, and of the whole phase portrait). In the general case for heteroclinic trajectories this 

additional conditions are not fulfilled a priori. 

 Taking into account mentioned above features and difficulties of the Melnikov’s-

Wiggins’ formalism we must note that the application of this methodology to the analysis of the 

DSSC chaotic dynamics is necessary in any case, at least, in the framework of the primordial 

research. It is also worth to construct the alternative additional analytical techniques of the 

heteroclinic chaos study. 

 

5. Conclusion 

In the paper the chaotic dynamics of the perturbed attitude motion of the magnetized 

DSSC with the complex general form of the constructional/mass-inertia asymmetry at the 

implementation of important regimes (including the cylindrical precessions on equatorial circle 

orbits of the Earth) was investigated basing on the Melnikov-Wiggins methodology. The 

corresponding simple polyharmonic structure of the Melnikov-Wiggins function was written for 

cases of Hamiltonian and non-Hamiltonian perturbations. Some heteroclinic chaos suppressing 

dissipative techniques were analyzed, including actions of natural forces/torques (the friction 

between the coaxial DSSC bodies, internal electromotor’s torques, counterelectromotive 

force/torques in the DSSC internal electromotor) and also some alternative suppressing 

techniques were suggested, including the creation of internal magnetic impulses, and the 

implementation of the DSSC conjugate rotors “spinup-capture” dynamics. All of them can be 

used as the natural instruments for the DSSC motion parameters changing and for the chaos 

control/avoidance.  
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